TPTP Problem File: SEU264+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU264+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t16_relset_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t16_relset_1 [Urb07]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v5.5.0, 0.04 v5.4.0, 0.09 v5.3.0, 0.17 v5.2.0, 0.07 v5.0.0, 0.05 v4.1.0, 0.06 v4.0.1, 0.11 v4.0.0, 0.10 v3.7.0, 0.00 v3.3.0
% Syntax : Number of formulae : 18 ( 10 unt; 0 def)
% Number of atoms : 30 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 12 ( 0 ~; 0 |; 2 &)
% ( 2 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 5 usr; 1 prp; 0-3 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 35 ( 32 !; 3 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t12_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> ( subset(relation_dom(C),A)
& subset(relation_rng(C),B) ) ) ).
fof(t14_relset_1,axiom,
! [A,B,C,D] :
( relation_of2_as_subset(D,C,A)
=> ( subset(relation_rng(D),B)
=> relation_of2_as_subset(D,C,B) ) ) ).
fof(t16_relset_1,conjecture,
! [A,B,C,D] :
( relation_of2_as_subset(D,C,A)
=> ( subset(A,B)
=> relation_of2_as_subset(D,C,B) ) ) ).
fof(t1_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
%------------------------------------------------------------------------------