TPTP Problem File: SEU257+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU257+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t32_wellord1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t32_wellord1 [Urb07]
% Status : Theorem
% Rating : 0.06 v8.2.0, 0.03 v8.1.0, 0.00 v6.4.0, 0.04 v6.3.0, 0.00 v6.2.0, 0.04 v6.1.0, 0.07 v6.0.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.11 v5.2.0, 0.00 v4.0.0, 0.04 v3.7.0, 0.05 v3.3.0
% Syntax : Number of formulae : 13 ( 4 unt; 0 def)
% Number of atoms : 33 ( 3 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 20 ( 0 ~; 0 |; 4 &)
% ( 1 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 7 usr; 1 prp; 0-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 21 ( 21 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d4_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_ordering(A)
<=> ( reflexive(A)
& transitive(A)
& antisymmetric(A)
& connected(A)
& well_founded_relation(A) ) ) ) ).
fof(d6_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] : relation_restriction(A,B) = set_intersection2(A,cartesian_product2(B,B)) ) ).
fof(dt_k2_wellord1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_restriction(A,B)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(t22_wellord1,axiom,
! [A,B] :
( relation(B)
=> ( reflexive(B)
=> reflexive(relation_restriction(B,A)) ) ) ).
fof(t23_wellord1,axiom,
! [A,B] :
( relation(B)
=> ( connected(B)
=> connected(relation_restriction(B,A)) ) ) ).
fof(t24_wellord1,axiom,
! [A,B] :
( relation(B)
=> ( transitive(B)
=> transitive(relation_restriction(B,A)) ) ) ).
fof(t25_wellord1,axiom,
! [A,B] :
( relation(B)
=> ( antisymmetric(B)
=> antisymmetric(relation_restriction(B,A)) ) ) ).
fof(t31_wellord1,axiom,
! [A,B] :
( relation(B)
=> ( well_founded_relation(B)
=> well_founded_relation(relation_restriction(B,A)) ) ) ).
fof(t32_wellord1,conjecture,
! [A,B] :
( relation(B)
=> ( well_ordering(B)
=> well_ordering(relation_restriction(B,A)) ) ) ).
%------------------------------------------------------------------------------