TPTP Problem File: SEU255+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU255+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t25_wellord1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t25_wellord1 [Urb07]
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.17 v8.2.0, 0.14 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.13 v6.4.0, 0.15 v6.3.0, 0.17 v6.2.0, 0.20 v6.1.0, 0.27 v6.0.0, 0.22 v5.5.0, 0.26 v5.4.0, 0.32 v5.3.0, 0.41 v5.2.0, 0.25 v5.1.0, 0.29 v4.1.0, 0.30 v4.0.0, 0.33 v3.7.0, 0.30 v3.5.0, 0.32 v3.3.0
% Syntax : Number of formulae : 33 ( 17 unt; 0 def)
% Number of atoms : 63 ( 9 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 36 ( 6 ~; 1 |; 14 &)
% ( 2 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 7 usr; 1 prp; 0-2 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-2 aty)
% Number of variables : 43 ( 37 !; 6 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(d6_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] : relation_restriction(A,B) = set_intersection2(A,cartesian_product2(B,B)) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_wellord1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_restriction(A,B)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(l3_wellord1,axiom,
! [A] :
( relation(A)
=> ( antisymmetric(A)
<=> ! [B,C] :
( ( in(ordered_pair(B,C),A)
& in(ordered_pair(C,B),A) )
=> B = C ) ) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(t16_wellord1,axiom,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_restriction(C,B))
<=> ( in(A,C)
& in(A,cartesian_product2(B,B)) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t25_wellord1,conjecture,
! [A,B] :
( relation(B)
=> ( antisymmetric(B)
=> antisymmetric(relation_restriction(B,A)) ) ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------