TPTP Problem File: SEU249+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU249+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t19_wellord1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t19_wellord1 [Urb07]
% Status : Theorem
% Rating : 0.67 v9.0.0, 0.72 v8.2.0, 0.67 v7.5.0, 0.72 v7.4.0, 0.67 v7.3.0, 0.72 v7.1.0, 0.70 v7.0.0, 0.77 v6.4.0, 0.73 v6.3.0, 0.67 v6.2.0, 0.80 v6.1.0, 0.87 v6.0.0, 0.78 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.85 v5.2.0, 0.80 v5.1.0, 0.86 v5.0.0, 0.92 v4.1.0, 0.87 v4.0.1, 0.83 v4.0.0, 0.88 v3.7.0, 0.85 v3.5.0, 0.84 v3.4.0, 0.89 v3.3.0
% Syntax : Number of formulae : 52 ( 20 unt; 0 def)
% Number of atoms : 104 ( 16 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 62 ( 10 ~; 2 |; 21 &)
% ( 5 <=>; 24 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 7 usr; 1 prp; 0-2 aty)
% Number of functors : 11 ( 11 usr; 1 con; 0-2 aty)
% Number of variables : 80 ( 74 !; 6 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d6_relat_1,axiom,
! [A] :
( relation(A)
=> relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).
fof(d6_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] : relation_restriction(A,B) = set_intersection2(A,cartesian_product2(B,B)) ) ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k2_wellord1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_restriction(A,B)) ) ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_relat_1,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k7_relat_1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_dom_restriction(A,B)) ) ).
fof(dt_k8_relat_1,axiom,
! [A,B] :
( relation(B)
=> relation(relation_rng_restriction(A,B)) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(fc4_funct_1,axiom,
! [A,B] :
( ( relation(A)
& function(A) )
=> ( relation(relation_dom_restriction(A,B))
& function(relation_dom_restriction(A,B)) ) ) ).
fof(fc5_funct_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( relation(relation_rng_restriction(A,B))
& function(relation_rng_restriction(A,B)) ) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(l29_wellord1,axiom,
! [A,B] :
( relation(B)
=> subset(relation_dom(relation_rng_restriction(A,B)),relation_dom(B)) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t119_relat_1,axiom,
! [A,B] :
( relation(B)
=> relation_rng(relation_rng_restriction(A,B)) = set_intersection2(relation_rng(B),A) ) ).
fof(t17_wellord1,axiom,
! [A,B] :
( relation(B)
=> relation_restriction(B,A) = relation_dom_restriction(relation_rng_restriction(A,B),A) ) ).
fof(t18_wellord1,axiom,
! [A,B] :
( relation(B)
=> relation_restriction(B,A) = relation_rng_restriction(A,relation_dom_restriction(B,A)) ) ).
fof(t19_wellord1,conjecture,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_field(relation_restriction(C,B)))
=> ( in(A,relation_field(C))
& in(A,B) ) ) ) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t90_relat_1,axiom,
! [A,B] :
( relation(B)
=> relation_dom(relation_dom_restriction(B,A)) = set_intersection2(relation_dom(B),A) ) ).
fof(t99_relat_1,axiom,
! [A,B] :
( relation(B)
=> subset(relation_rng(relation_dom_restriction(B,A)),relation_rng(B)) ) ).
%------------------------------------------------------------------------------