TPTP Problem File: SEU247+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU247+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t18_wellord1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t18_wellord1 [Urb07]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.1.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.17 v6.0.0, 0.09 v5.5.0, 0.11 v5.4.0, 0.14 v5.3.0, 0.15 v5.2.0, 0.05 v5.0.0, 0.04 v4.0.0, 0.08 v3.7.0, 0.10 v3.5.0, 0.11 v3.3.0
% Syntax : Number of formulae : 11 ( 4 unt; 0 def)
% Number of atoms : 18 ( 6 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 7 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 1 usr; 1 prp; 0-2 aty)
% Number of functors : 5 ( 5 usr; 0 con; 2-2 aty)
% Number of variables : 19 ( 19 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d6_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] : relation_restriction(A,B) = set_intersection2(A,cartesian_product2(B,B)) ) ).
fof(dt_k2_wellord1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_restriction(A,B)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k7_relat_1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_dom_restriction(A,B)) ) ).
fof(dt_k8_relat_1,axiom,
! [A,B] :
( relation(B)
=> relation(relation_rng_restriction(A,B)) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(t140_relat_1,axiom,
! [A,B,C] :
( relation(C)
=> relation_dom_restriction(relation_rng_restriction(A,C),B) = relation_rng_restriction(A,relation_dom_restriction(C,B)) ) ).
fof(t17_wellord1,axiom,
! [A,B] :
( relation(B)
=> relation_restriction(B,A) = relation_dom_restriction(relation_rng_restriction(A,B),A) ) ).
fof(t18_wellord1,conjecture,
! [A,B] :
( relation(B)
=> relation_restriction(B,A) = relation_rng_restriction(A,relation_dom_restriction(B,A)) ) ).
%------------------------------------------------------------------------------