TPTP Problem File: SEU244+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU244+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t8_wellord1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t8_wellord1 [Urb07]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.11 v8.2.0, 0.08 v8.1.0, 0.06 v7.4.0, 0.03 v7.2.0, 0.00 v6.4.0, 0.04 v6.3.0, 0.00 v6.2.0, 0.04 v6.1.0, 0.07 v6.0.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.11 v5.2.0, 0.00 v4.0.1, 0.04 v4.0.0, 0.08 v3.7.0, 0.05 v3.3.0
% Syntax : Number of formulae : 15 ( 6 unt; 0 def)
% Number of atoms : 40 ( 3 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 25 ( 0 ~; 0 |; 8 &)
% ( 8 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 15 ( 13 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 14 ( 14 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d12_relat_2,axiom,
! [A] :
( relation(A)
=> ( antisymmetric(A)
<=> is_antisymmetric_in(A,relation_field(A)) ) ) ).
fof(d14_relat_2,axiom,
! [A] :
( relation(A)
=> ( connected(A)
<=> is_connected_in(A,relation_field(A)) ) ) ).
fof(d16_relat_2,axiom,
! [A] :
( relation(A)
=> ( transitive(A)
<=> is_transitive_in(A,relation_field(A)) ) ) ).
fof(d4_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_ordering(A)
<=> ( reflexive(A)
& transitive(A)
& antisymmetric(A)
& connected(A)
& well_founded_relation(A) ) ) ) ).
fof(d5_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( well_orders(A,B)
<=> ( is_reflexive_in(A,B)
& is_transitive_in(A,B)
& is_antisymmetric_in(A,B)
& is_connected_in(A,B)
& is_well_founded_in(A,B) ) ) ) ).
fof(d6_relat_1,axiom,
! [A] :
( relation(A)
=> relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).
fof(d9_relat_2,axiom,
! [A] :
( relation(A)
=> ( reflexive(A)
<=> is_reflexive_in(A,relation_field(A)) ) ) ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k3_relat_1,axiom,
$true ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(t5_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_founded_relation(A)
<=> is_well_founded_in(A,relation_field(A)) ) ) ).
fof(t8_wellord1,conjecture,
! [A] :
( relation(A)
=> ( well_orders(A,relation_field(A))
<=> well_ordering(A) ) ) ).
%------------------------------------------------------------------------------