TPTP Problem File: SEU236+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU236+3 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Ordinal numbers, theorem 33
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Ban90] Bancerek (1990), The Ordinal Numbers
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : ordinal1__t33_ordinal1 [Urb06]
% Status : Theorem
% Rating : 0.48 v9.0.0, 0.50 v8.1.0, 0.47 v7.5.0, 0.53 v7.4.0, 0.37 v7.3.0, 0.45 v7.2.0, 0.41 v7.1.0, 0.39 v7.0.0, 0.47 v6.4.0, 0.50 v6.2.0, 0.64 v6.1.0, 0.63 v6.0.0, 0.65 v5.5.0, 0.70 v5.4.0, 0.71 v5.3.0, 0.78 v5.2.0, 0.65 v5.1.0, 0.67 v4.1.0, 0.65 v4.0.1, 0.57 v4.0.0, 0.54 v3.7.0, 0.50 v3.5.0, 0.53 v3.4.0, 0.58 v3.3.0, 0.57 v3.2.0
% Syntax : Number of formulae : 52 ( 11 unt; 0 def)
% Number of atoms : 139 ( 8 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 101 ( 14 ~; 2 |; 55 &)
% ( 7 <=>; 23 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 76 ( 62 !; 14 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(connectedness_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ( ordinal_subset(A,B)
| ordinal_subset(B,A) ) ) ).
fof(d1_ordinal1,axiom,
! [A] : succ(A) = set_union2(A,singleton(A)) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d2_ordinal1,axiom,
! [A] :
( epsilon_transitive(A)
<=> ! [B] :
( in(B,A)
=> subset(B,A) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_ordinal1,axiom,
! [A] : ~ empty(succ(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc2_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_union2(A,B)) ) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( ~ empty(succ(A))
& epsilon_transitive(succ(A))
& epsilon_connected(succ(A))
& ordinal(succ(A)) ) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( relation(A)
& relation_non_empty(A)
& function(A) ) ).
fof(redefinition_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ( ordinal_subset(A,B)
<=> subset(A,B) ) ) ).
fof(reflexivity_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ordinal_subset(A,A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t10_ordinal1,axiom,
! [A] : in(A,succ(A)) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t33_ordinal1,conjecture,
! [A] :
( ordinal(A)
=> ! [B] :
( ordinal(B)
=> ( in(A,B)
<=> ordinal_subset(succ(A),B) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t8_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& subset(C,B) )
=> subset(set_union2(A,C),B) ) ).
%------------------------------------------------------------------------------