TPTP Problem File: SEU235+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU235+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t32_ordinal1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t32_ordinal1 [Urb07]
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.50 v8.2.0, 0.53 v8.1.0, 0.47 v7.3.0, 0.48 v7.2.0, 0.45 v7.1.0, 0.43 v7.0.0, 0.47 v6.4.0, 0.54 v6.3.0, 0.58 v6.2.0, 0.64 v6.1.0, 0.77 v6.0.0, 0.65 v5.5.0, 0.70 v5.4.0, 0.71 v5.3.0, 0.74 v5.2.0, 0.70 v5.1.0, 0.76 v5.0.0, 0.71 v4.1.0, 0.70 v4.0.1, 0.74 v4.0.0, 0.75 v3.7.0, 0.70 v3.5.0, 0.74 v3.4.0, 0.63 v3.3.0
% Syntax : Number of formulae : 44 ( 8 unt; 0 def)
% Number of atoms : 128 ( 4 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 102 ( 18 ~; 2 |; 56 &)
% ( 3 <=>; 23 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 14 ( 12 usr; 1 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 61 ( 48 !; 13 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(connectedness_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ( ordinal_subset(A,B)
| ordinal_subset(B,A) ) ) ).
fof(d2_ordinal1,axiom,
! [A] :
( epsilon_transitive(A)
<=> ! [B] :
( in(B,A)
=> subset(B,A) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(redefinition_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ( ordinal_subset(A,B)
<=> subset(A,B) ) ) ).
fof(reflexivity_r1_ordinal1,axiom,
! [A,B] :
( ( ordinal(A)
& ordinal(B) )
=> ordinal_subset(A,A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t23_ordinal1,axiom,
! [A,B] :
( ordinal(B)
=> ( in(A,B)
=> ordinal(A) ) ) ).
fof(t24_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ! [B] :
( ordinal(B)
=> ~ ( ~ in(A,B)
& A != B
& ~ in(B,A) ) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t32_ordinal1,conjecture,
! [A,B] :
( ordinal(B)
=> ~ ( subset(A,B)
& A != empty_set
& ! [C] :
( ordinal(C)
=> ~ ( in(C,A)
& ! [D] :
( ordinal(D)
=> ( in(D,A)
=> ordinal_subset(C,D) ) ) ) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t7_tarski,axiom,
! [A,B] :
~ ( in(A,B)
& ! [C] :
~ ( in(C,B)
& ! [D] :
~ ( in(D,B)
& in(D,C) ) ) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------