TPTP Problem File: SEU234+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU234+3 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Ordinal numbers, theorem 31
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Ban90] Bancerek (1990), The Ordinal Numbers
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : ordinal1__t31_ordinal1 [Urb06]
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.17 v8.2.0, 0.14 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.10 v6.4.0, 0.12 v6.3.0, 0.08 v6.2.0, 0.04 v6.1.0, 0.13 v5.5.0, 0.11 v5.4.0, 0.18 v5.3.0, 0.22 v5.2.0, 0.10 v5.1.0, 0.24 v5.0.0, 0.25 v4.1.0, 0.22 v4.0.1, 0.17 v3.7.0, 0.10 v3.5.0, 0.11 v3.4.0, 0.21 v3.2.0
% Syntax : Number of formulae : 39 ( 5 unt; 0 def)
% Number of atoms : 115 ( 4 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 92 ( 16 ~; 1 |; 55 &)
% ( 4 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 52 ( 38 !; 14 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(d2_ordinal1,axiom,
! [A] :
( epsilon_transitive(A)
<=> ! [B] :
( in(B,A)
=> subset(B,A) ) ) ).
fof(d3_ordinal1,axiom,
! [A] :
( epsilon_connected(A)
<=> ! [B,C] :
~ ( in(B,A)
& in(C,A)
& ~ in(B,C)
& B != C
& ~ in(C,B) ) ) ).
fof(d4_ordinal1,axiom,
! [A] :
( ordinal(A)
<=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( relation(A)
& relation_non_empty(A)
& function(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t24_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ! [B] :
( ordinal(B)
=> ~ ( ~ in(A,B)
& A != B
& ~ in(B,A) ) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t31_ordinal1,conjecture,
! [A] :
( ! [B] :
( in(B,A)
=> ( ordinal(B)
& subset(B,A) ) )
=> ordinal(A) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------