TPTP Problem File: SEU230+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU230+3 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set Theory
% Problem : Ordinal numbers, theorem Ordinal numbers, theorem 10
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Ban90] Bancerek (1990), The Ordinal Numbers
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : ordinal1__t10_ordinal1 [Urb06]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.14 v8.1.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.08 v6.2.0, 0.20 v6.1.0, 0.30 v5.5.0, 0.15 v5.4.0, 0.18 v5.3.0, 0.22 v5.2.0, 0.00 v5.1.0, 0.05 v5.0.0, 0.17 v4.0.1, 0.22 v4.0.0, 0.21 v3.7.0, 0.15 v3.5.0, 0.11 v3.4.0, 0.16 v3.3.0, 0.07 v3.2.0
% Syntax : Number of formulae : 34 ( 10 unt; 0 def)
% Number of atoms : 73 ( 9 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 50 ( 11 ~; 2 |; 23 &)
% ( 4 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 9 ( 8 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 47 ( 36 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d1_ordinal1,axiom,
! [A] : succ(A) = set_union2(A,singleton(A)) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_ordinal1,axiom,
! [A] : ~ empty(succ(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_union2(A,B)) ) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( relation(A)
& relation_non_empty(A)
& function(A) ) ).
fof(t10_ordinal1,conjecture,
! [A] : in(A,succ(A)) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------