TPTP Problem File: SEU219+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU219+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t55_funct_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t55_funct_1 [Urb07]
% Status : Theorem
% Rating : 0.03 v9.0.0, 0.06 v8.1.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.04 v6.1.0, 0.10 v6.0.0, 0.00 v5.5.0, 0.04 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.0, 0.08 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0
% Syntax : Number of formulae : 11 ( 2 unt; 0 def)
% Number of atoms : 32 ( 6 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 21 ( 0 ~; 0 |; 12 &)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-1 aty)
% Number of variables : 9 ( 7 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(d9_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ( one_to_one(A)
=> function_inverse(A) = relation_inverse(A) ) ) ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k2_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ( relation(function_inverse(A))
& function(function_inverse(A)) ) ) ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k4_relat_1,axiom,
! [A] :
( relation(A)
=> relation(relation_inverse(A)) ) ).
fof(fc3_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A)
& one_to_one(A) )
=> ( relation(relation_inverse(A))
& function(relation_inverse(A)) ) ) ).
fof(involutiveness_k4_relat_1,axiom,
! [A] :
( relation(A)
=> relation_inverse(relation_inverse(A)) = A ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(t37_relat_1,axiom,
! [A] :
( relation(A)
=> ( relation_rng(A) = relation_dom(relation_inverse(A))
& relation_dom(A) = relation_rng(relation_inverse(A)) ) ) ).
fof(t55_funct_1,conjecture,
! [A] :
( ( relation(A)
& function(A) )
=> ( one_to_one(A)
=> ( relation_rng(A) = relation_dom(function_inverse(A))
& relation_dom(A) = relation_rng(function_inverse(A)) ) ) ) ).
%------------------------------------------------------------------------------