TPTP Problem File: SEU217+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU217+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t35_funct_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t35_funct_1 [Urb07]
% Status : Theorem
% Rating : 0.03 v8.1.0, 0.00 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.17 v6.0.0, 0.09 v5.5.0, 0.11 v5.4.0, 0.18 v5.3.0, 0.19 v5.2.0, 0.00 v5.0.0, 0.12 v4.1.0, 0.13 v4.0.1, 0.17 v4.0.0, 0.21 v3.7.0, 0.10 v3.5.0, 0.11 v3.3.0
% Syntax : Number of formulae : 28 ( 9 unt; 0 def)
% Number of atoms : 56 ( 6 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 36 ( 8 ~; 1 |; 15 &)
% ( 1 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 30 ( 23 !; 7 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(fc5_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_dom(A)) ) ).
fof(fc7_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_dom(A))
& relation(relation_dom(A)) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k6_relat_1,axiom,
! [A] : relation(identity_relation(A)) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(fc2_funct_1,axiom,
! [A] :
( relation(identity_relation(A))
& function(identity_relation(A)) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t35_funct_1,conjecture,
! [A,B] :
( in(B,A)
=> apply(identity_relation(A),B) = B ) ).
fof(t34_funct_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( B = identity_relation(A)
<=> ( relation_dom(B) = A
& ! [C] :
( in(C,A)
=> apply(B,C) = C ) ) ) ) ).
%------------------------------------------------------------------------------