TPTP Problem File: SEU210+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU210+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t174_relat_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t174_relat_1 [Urb07]
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.56 v8.1.0, 0.50 v7.5.0, 0.56 v7.4.0, 0.47 v7.3.0, 0.55 v7.2.0, 0.52 v7.0.0, 0.43 v6.4.0, 0.42 v6.3.0, 0.50 v6.2.0, 0.56 v6.1.0, 0.60 v6.0.0, 0.61 v5.5.0, 0.67 v5.4.0, 0.64 v5.3.0, 0.67 v5.2.0, 0.50 v5.1.0, 0.52 v5.0.0, 0.54 v4.1.0, 0.52 v4.0.1, 0.43 v4.0.0, 0.46 v3.7.0, 0.35 v3.5.0, 0.32 v3.4.0, 0.37 v3.3.0
% Syntax : Number of formulae : 40 ( 19 unt; 0 def)
% Number of atoms : 76 ( 7 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 53 ( 17 ~; 1 |; 17 &)
% ( 5 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 5 usr; 1 prp; 0-2 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-2 aty)
% Number of variables : 57 ( 48 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d5_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( B = relation_rng(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] : in(ordered_pair(D,C),A) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(dt_k10_relat_1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_subset_1,axiom,
! [A] : ~ empty(singleton(A)) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ empty(unordered_pair(A,B)) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc6_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_rng(A)) ) ).
fof(fc8_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_rng(A))
& relation(relation_rng(A)) ) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t166_relat_1,axiom,
! [A,B,C] :
( relation(C)
=> ( in(A,relation_inverse_image(C,B))
<=> ? [D] :
( in(D,relation_rng(C))
& in(ordered_pair(A,D),C)
& in(D,B) ) ) ) ).
fof(t174_relat_1,conjecture,
! [A,B] :
( relation(B)
=> ~ ( A != empty_set
& subset(A,relation_rng(B))
& relation_inverse_image(B,A) = empty_set ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------