TPTP Problem File: SEU202+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU202+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t140_relat_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t140_relat_1 [Urb07]
% Status : Theorem
% Rating : 0.79 v9.0.0, 0.75 v8.2.0, 0.78 v8.1.0, 0.81 v7.4.0, 0.63 v7.3.0, 0.69 v7.2.0, 0.66 v7.1.0, 0.65 v7.0.0, 0.70 v6.4.0, 0.73 v6.3.0, 0.75 v6.2.0, 0.72 v6.1.0, 0.77 v6.0.0, 0.78 v5.5.0, 0.89 v5.2.0, 0.90 v5.0.0, 0.92 v4.1.0, 0.91 v4.0.1, 0.87 v4.0.0, 0.88 v3.7.0, 0.80 v3.5.0, 0.84 v3.4.0, 0.89 v3.3.0
% Syntax : Number of formulae : 30 ( 14 unt; 0 def)
% Number of atoms : 59 ( 8 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 38 ( 9 ~; 1 |; 8 &)
% ( 6 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 48 ( 43 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d11_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B,C] :
( relation(C)
=> ( C = relation_dom_restriction(A,B)
<=> ! [D,E] :
( in(ordered_pair(D,E),C)
<=> ( in(D,B)
& in(ordered_pair(D,E),A) ) ) ) ) ) ).
fof(d12_relat_1,axiom,
! [A,B] :
( relation(B)
=> ! [C] :
( relation(C)
=> ( C = relation_rng_restriction(A,B)
<=> ! [D,E] :
( in(ordered_pair(D,E),C)
<=> ( in(E,A)
& in(ordered_pair(D,E),B) ) ) ) ) ) ).
fof(d2_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ( A = B
<=> ! [C,D] :
( in(ordered_pair(C,D),A)
<=> in(ordered_pair(C,D),B) ) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k7_relat_1,axiom,
! [A,B] :
( relation(A)
=> relation(relation_dom_restriction(A,B)) ) ).
fof(dt_k8_relat_1,axiom,
! [A,B] :
( relation(B)
=> relation(relation_rng_restriction(A,B)) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_subset_1,axiom,
! [A] : ~ empty(singleton(A)) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ empty(unordered_pair(A,B)) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t140_relat_1,conjecture,
! [A,B,C] :
( relation(C)
=> relation_dom_restriction(relation_rng_restriction(A,C),B) = relation_rng_restriction(A,relation_dom_restriction(C,B)) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------