TPTP Problem File: SEU173+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU173+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem l71_subset_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-l71_subset_1 [Urb07]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.25 v8.2.0, 0.22 v7.5.0, 0.25 v7.4.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.13 v7.0.0, 0.07 v6.4.0, 0.12 v6.2.0, 0.20 v6.1.0, 0.27 v6.0.0, 0.26 v5.5.0, 0.22 v5.4.0, 0.25 v5.3.0, 0.26 v5.2.0, 0.05 v5.0.0, 0.25 v4.1.0, 0.26 v4.0.0, 0.29 v3.7.0, 0.25 v3.5.0, 0.26 v3.3.0
% Syntax : Number of formulae : 19 ( 9 unt; 0 def)
% Number of atoms : 38 ( 3 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 28 ( 9 ~; 0 |; 6 &)
% ( 5 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 6 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 29 ( 24 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(d1_zfmisc_1,axiom,
! [A,B] :
( B = powerset(A)
<=> ! [C] :
( in(C,B)
<=> subset(C,A) ) ) ).
fof(d2_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
=> ( element(B,A)
<=> in(B,A) ) )
& ( empty(A)
=> ( element(B,A)
<=> empty(B) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(l71_subset_1,conjecture,
! [A,B] :
( ! [C] :
( in(C,A)
=> in(C,B) )
=> element(A,powerset(B)) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------