TPTP Problem File: SEU165+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU165+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t106_zfmisc_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t106_zfmisc_1 [Urb07]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.06 v7.4.0, 0.03 v7.2.0, 0.00 v6.4.0, 0.04 v6.2.0, 0.08 v6.1.0, 0.07 v6.0.0, 0.04 v5.5.0, 0.00 v5.4.0, 0.07 v5.3.0, 0.11 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.12 v3.7.0, 0.05 v3.3.0
% Syntax : Number of formulae : 12 ( 9 unt; 0 def)
% Number of atoms : 17 ( 2 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 8 ( 3 ~; 0 |; 2 &)
% ( 2 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 2 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 18 ( 16 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(t106_zfmisc_1,conjecture,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(l55_zfmisc_1,axiom,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
%------------------------------------------------------------------------------