TPTP Problem File: SEU164+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU164+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t99_zfmisc_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t99_zfmisc_1 [Urb07]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.1.0, 0.36 v7.5.0, 0.34 v7.4.0, 0.40 v7.3.0, 0.34 v7.2.0, 0.31 v7.1.0, 0.30 v7.0.0, 0.33 v6.4.0, 0.35 v6.3.0, 0.38 v6.2.0, 0.44 v6.1.0, 0.57 v6.0.0, 0.52 v5.4.0, 0.57 v5.3.0, 0.52 v5.2.0, 0.40 v5.1.0, 0.38 v5.0.0, 0.33 v4.1.0, 0.39 v4.0.1, 0.43 v4.0.0, 0.50 v3.5.0, 0.53 v3.3.0
% Syntax : Number of formulae : 12 ( 5 unt; 0 def)
% Number of atoms : 25 ( 6 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 14 ( 1 ~; 0 |; 1 &)
% ( 9 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 2 usr; 1 prp; 0-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-1 aty)
% Number of variables : 23 ( 22 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d1_zfmisc_1,axiom,
! [A,B] :
( B = powerset(A)
<=> ! [C] :
( in(C,B)
<=> subset(C,A) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k3_tarski,axiom,
$true ).
fof(l2_zfmisc_1,axiom,
! [A,B] :
( subset(singleton(A),B)
<=> in(A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t99_zfmisc_1,conjecture,
! [A] : union(powerset(A)) = A ).
%------------------------------------------------------------------------------