TPTP Problem File: SEU157+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU157+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem l55_zfmisc_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-l55_zfmisc_1 [Urb07]
% Status : Theorem
% Rating : 0.30 v9.0.0, 0.33 v8.1.0, 0.31 v7.4.0, 0.20 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.35 v6.3.0, 0.33 v6.2.0, 0.36 v6.1.0, 0.50 v6.0.0, 0.43 v5.5.0, 0.44 v5.4.0, 0.43 v5.3.0, 0.48 v5.2.0, 0.35 v5.1.0, 0.33 v5.0.0, 0.38 v4.1.0, 0.39 v4.0.1, 0.35 v4.0.0, 0.42 v3.7.0, 0.40 v3.5.0, 0.37 v3.4.0, 0.47 v3.3.0
% Syntax : Number of formulae : 13 ( 9 unt; 0 def)
% Number of atoms : 22 ( 7 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 12 ( 3 ~; 0 |; 4 &)
% ( 3 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 2 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 24 ( 20 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d2_zfmisc_1,axiom,
! [A,B,C] :
( C = cartesian_product2(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E,F] :
( in(E,A)
& in(F,B)
& D = ordered_pair(E,F) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(l55_zfmisc_1,conjecture,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t33_zfmisc_1,axiom,
! [A,B,C,D] :
( ordered_pair(A,B) = ordered_pair(C,D)
=> ( A = C
& B = D ) ) ).
%------------------------------------------------------------------------------