TPTP Problem File: SEU147+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU147+1 : TPTP v9.0.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t1_zfmisc_1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t1_zfmisc_1 [Urb07]

% Status   : Theorem
% Rating   : 0.15 v9.0.0, 0.22 v8.2.0, 0.19 v8.1.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.13 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.17 v5.5.0, 0.11 v5.4.0, 0.14 v5.3.0, 0.19 v5.2.0, 0.00 v5.0.0, 0.08 v4.1.0, 0.13 v4.0.1, 0.17 v4.0.0, 0.21 v3.7.0, 0.15 v3.5.0, 0.16 v3.3.0
% Syntax   : Number of formulae    :   13 (   8 unt;   0 def)
%            Number of atoms       :   21 (   6 equ)
%            Maximal formula atoms :    3 (   1 avg)
%            Number of connectives :   10 (   2   ~;   0   |;   0   &)
%                                         (   5 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   3 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    3 (   3 usr;   1 con; 0-1 aty)
%            Number of variables   :   16 (  14   !;   2   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(d1_tarski,axiom,
    ! [A,B] :
      ( B = singleton(A)
    <=> ! [C] :
          ( in(C,B)
        <=> C = A ) ) ).

fof(d1_zfmisc_1,axiom,
    ! [A,B] :
      ( B = powerset(A)
    <=> ! [C] :
          ( in(C,B)
        <=> subset(C,A) ) ) ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t1_zfmisc_1,conjecture,
    powerset(empty_set) = singleton(empty_set) ).

fof(t2_tarski,axiom,
    ! [A,B] :
      ( ! [C] :
          ( in(C,A)
        <=> in(C,B) )
     => A = B ) ).

fof(t3_xboole_1,axiom,
    ! [A] :
      ( subset(A,empty_set)
     => A = empty_set ) ).

%------------------------------------------------------------------------------