TPTP Problem File: SEU146+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU146+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem l4_zfmisc_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-l4_zfmisc_1 [Urb07]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.14 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.12 v6.2.0, 0.20 v6.1.0, 0.23 v6.0.0, 0.22 v5.4.0, 0.29 v5.3.0, 0.26 v5.2.0, 0.10 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.1, 0.13 v4.0.0, 0.17 v3.7.0, 0.10 v3.5.0, 0.11 v3.4.0, 0.16 v3.3.0
% Syntax : Number of formulae : 15 ( 8 unt; 0 def)
% Number of atoms : 25 ( 5 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 12 ( 2 ~; 2 |; 1 &)
% ( 4 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 19 ( 17 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k4_xboole_0,axiom,
$true ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(l2_zfmisc_1,axiom,
! [A,B] :
( subset(singleton(A),B)
<=> in(A,B) ) ).
fof(l3_zfmisc_1,axiom,
! [A,B,C] :
( subset(A,B)
=> ( in(C,A)
| subset(A,set_difference(B,singleton(C))) ) ) ).
fof(l4_zfmisc_1,conjecture,
! [A,B] :
( subset(A,singleton(B))
<=> ( A = empty_set
| A = singleton(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t2_xboole_1,axiom,
! [A] : subset(empty_set,A) ).
fof(t37_xboole_1,axiom,
! [A,B] :
( set_difference(A,B) = empty_set
<=> subset(A,B) ) ).
fof(t3_xboole_1,axiom,
! [A] :
( subset(A,empty_set)
=> A = empty_set ) ).
%------------------------------------------------------------------------------