TPTP Problem File: SEU139+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU139+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t60_xboole_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t60_xboole_1 [Urb07]
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v4.1.0, 0.04 v3.7.0, 0.14 v3.5.0, 0.00 v3.4.0, 0.08 v3.3.0
% Syntax : Number of formulae : 6 ( 2 unt; 0 def)
% Number of atoms : 12 ( 2 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 10 ( 4 ~; 0 |; 3 &)
% ( 2 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 12 ( 12 !; 0 ?)
% SPC : FOF_THM_EPR_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_xboole_0,axiom,
! [A,B] :
( proper_subset(A,B)
=> ~ proper_subset(B,A) ) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(d8_xboole_0,axiom,
! [A,B] :
( proper_subset(A,B)
<=> ( subset(A,B)
& A != B ) ) ).
fof(irreflexivity_r2_xboole_0,axiom,
! [A,B] : ~ proper_subset(A,A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t60_xboole_1,conjecture,
! [A,B] :
~ ( subset(A,B)
& proper_subset(B,A) ) ).
%------------------------------------------------------------------------------