TPTP Problem File: SEU125+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU125+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t8_xboole_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t8_xboole_1 [Urb07]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.25 v8.2.0, 0.28 v7.4.0, 0.17 v7.3.0, 0.21 v7.2.0, 0.17 v7.0.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.17 v6.2.0, 0.32 v6.1.0, 0.40 v6.0.0, 0.30 v5.5.0, 0.41 v5.4.0, 0.46 v5.3.0, 0.52 v5.2.0, 0.30 v5.1.0, 0.33 v5.0.0, 0.38 v4.1.0, 0.39 v4.0.0, 0.42 v3.7.0, 0.40 v3.5.0, 0.42 v3.3.0
% Syntax : Number of formulae : 18 ( 9 unt; 0 def)
% Number of atoms : 32 ( 6 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 23 ( 9 ~; 1 |; 4 &)
% ( 3 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 30 ( 28 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t8_xboole_1,conjecture,
! [A,B,C] :
( ( subset(A,B)
& subset(C,B) )
=> subset(set_union2(A,C),B) ) ).
%------------------------------------------------------------------------------