TPTP Problem File: SEU122+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU122+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP chainy problem t2_xboole_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : chainy-t2_xboole_1 [Urb07]
% Status : Theorem
% Rating : 0.03 v9.0.0, 0.06 v8.1.0, 0.03 v7.2.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.1.0, 0.10 v6.0.0, 0.09 v5.5.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.11 v5.2.0, 0.00 v5.0.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.12 v3.7.0, 0.10 v3.5.0, 0.11 v3.3.0
% Syntax : Number of formulae : 21 ( 9 unt; 0 def)
% Number of atoms : 44 ( 7 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 37 ( 14 ~; 0 |; 13 &)
% ( 5 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 6 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 40 ( 36 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d1_xboole_0,axiom,
! [A] :
( A = empty_set
<=> ! [B] : ~ in(B,A) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_intersection2(A,B) = empty_set ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t1_xboole_1,lemma,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t2_xboole_1,conjecture,
! [A] : subset(empty_set,A) ).
fof(t3_xboole_0,lemma,
! [A,B] :
( ~ ( ~ disjoint(A,B)
& ! [C] :
~ ( in(C,A)
& in(C,B) ) )
& ~ ( ? [C] :
( in(C,A)
& in(C,B) )
& disjoint(A,B) ) ) ).
fof(t4_xboole_0,lemma,
! [A,B] :
( ~ ( ~ disjoint(A,B)
& ! [C] : ~ in(C,set_intersection2(A,B)) )
& ~ ( ? [C] : in(C,set_intersection2(A,B))
& disjoint(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------