TPTP Problem File: SEU088+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU088+1 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Set theory
% Problem : Finite sets, theorem 19
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Dar90] Darmochwal (1990), Finite Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : finset_1__t19_finset_1 [Urb06]
% Status : Theorem
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 87 ( 12 unt; 0 def)
% Number of atoms : 282 ( 19 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 224 ( 29 ~; 1 |; 137 &)
% ( 13 <=>; 44 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 20 ( 19 usr; 0 prp; 1-2 aty)
% Number of functors : 12 ( 12 usr; 2 con; 0-2 aty)
% Number of variables : 145 ( 111 !; 34 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
% Bugfixes : v4.0.0 - Removed duplicate formula t2_tarski
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_arytm_3,axiom,
! [A] :
( ordinal(A)
=> ! [B] :
( element(B,A)
=> ( epsilon_transitive(B)
& epsilon_connected(B)
& ordinal(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc2_arytm_3,axiom,
! [A] :
( ( empty(A)
& ordinal(A) )
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( finite(A)
=> ! [B] :
( element(B,powerset(A))
=> finite(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(cc4_arytm_3,axiom,
! [A] :
( element(A,positive_rationals)
=> ( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d2_zfmisc_1,axiom,
! [A,B,C] :
( C = cartesian_product2(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E,F] :
( in(E,A)
& in(F,B)
& D = ordered_pair(E,F) ) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(d5_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ! [B] :
( B = relation_rng(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(D,relation_dom(A))
& C = apply(A,D) ) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc13_finset_1,axiom,
! [A,B] :
( ( relation(A)
& function(A)
& finite(B) )
=> finite(relation_image(A,B)) ) ).
fof(fc1_finset_1,axiom,
! [A] :
( ~ empty(singleton(A))
& finite(singleton(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_finset_1,axiom,
! [A,B] :
( ~ empty(unordered_pair(A,B))
& finite(unordered_pair(A,B)) ) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc2_subset_1,axiom,
! [A] : ~ empty(singleton(A)) ).
fof(fc3_ordinal2,axiom,
! [A,B] :
( ( relation(A)
& function(A)
& transfinite_sequence(A)
& ordinal_yielding(A)
& ordinal(B) )
=> ( epsilon_transitive(apply(A,B))
& epsilon_connected(apply(A,B))
& ordinal(apply(A,B)) ) ) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ empty(unordered_pair(A,B)) ).
fof(fc4_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(union(A))
& epsilon_connected(union(A))
& ordinal(union(A)) ) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
& ~ empty(B) )
=> ~ empty(cartesian_product2(A,B)) ) ).
fof(fc5_ordinal1,axiom,
! [A] :
( ( relation(A)
& function(A)
& transfinite_sequence(A) )
=> ( epsilon_transitive(relation_dom(A))
& epsilon_connected(relation_dom(A))
& ordinal(relation_dom(A)) ) ) ).
fof(fc5_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_dom(A)) ) ).
fof(fc6_funct_1,axiom,
! [A] :
( ( relation(A)
& relation_non_empty(A)
& function(A) )
=> with_non_empty_elements(relation_rng(A)) ) ).
fof(fc6_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_rng(A)) ) ).
fof(fc7_funcop_1,axiom,
! [A,B] :
( ( relation(A)
& function(A)
& function_yielding(A) )
=> ( relation(apply(A,B))
& function(apply(A,B)) ) ) ).
fof(fc7_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_dom(A))
& relation(relation_dom(A)) ) ) ).
fof(fc8_arytm_3,axiom,
~ empty(positive_rationals) ).
fof(fc8_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_rng(A))
& relation(relation_rng(A)) ) ) ).
fof(l22_finset_1,axiom,
! [A] :
( ( finite(A)
& ! [B] :
( in(B,A)
=> finite(B) ) )
=> finite(union(A)) ) ).
fof(rc1_arytm_3,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_funcop_1,axiom,
? [A] :
( relation(A)
& function(A)
& function_yielding(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_ordinal2,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& being_limit_ordinal(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_arytm_3,axiom,
? [A] :
( element(A,positive_rationals)
& ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_finset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B)
& relation(B)
& function(B)
& one_to_one(B)
& epsilon_transitive(B)
& epsilon_connected(B)
& ordinal(B)
& natural(B)
& finite(B) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_ordinal2,axiom,
? [A] :
( relation(A)
& function(A)
& transfinite_sequence(A)
& ordinal_yielding(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_arytm_3,axiom,
? [A] :
( element(A,positive_rationals)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A)
& natural(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(rc4_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& transfinite_sequence(A) ) ).
fof(rc5_funct_1,axiom,
? [A] :
( relation(A)
& relation_non_empty(A)
& function(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(s1_xboole_0__e4_30__finset_1,axiom,
! [A,B] :
? [C] :
! [D] :
( in(D,C)
<=> ( in(D,powerset(cartesian_product2(A,B)))
& ? [E] :
( in(E,B)
& D = cartesian_product2(A,singleton(E)) ) ) ) ).
fof(s3_funct_1__e1_30_1__finset_1,axiom,
! [A,B] :
? [C] :
( relation(C)
& function(C)
& relation_dom(C) = A
& ! [D] :
( in(D,A)
=> apply(C,D) = ordered_pair(D,B) ) ) ).
fof(s3_funct_1__e8_30__finset_1,axiom,
! [A,B] :
? [C] :
( relation(C)
& function(C)
& relation_dom(C) = B
& ! [D] :
( in(D,B)
=> apply(C,D) = cartesian_product2(A,singleton(D)) ) ) ).
fof(t118_zfmisc_1,axiom,
! [A,B,C] :
( subset(A,B)
=> ( subset(cartesian_product2(A,C),cartesian_product2(B,C))
& subset(cartesian_product2(C,A),cartesian_product2(C,B)) ) ) ).
fof(t129_zfmisc_1,axiom,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,singleton(D)))
<=> ( in(A,C)
& B = D ) ) ).
fof(t146_relat_1,axiom,
! [A] :
( relation(A)
=> relation_image(A,relation_dom(A)) = relation_rng(A) ) ).
fof(t17_finset_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( finite(A)
=> finite(relation_image(B,A)) ) ) ).
fof(t19_finset_1,conjecture,
! [A,B] :
( ( finite(A)
& finite(B) )
=> finite(cartesian_product2(A,B)) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t37_zfmisc_1,axiom,
! [A,B] :
( subset(singleton(A),B)
<=> in(A,B) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------