TPTP Problem File: SEU056+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU056+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Functions and their basic properties, theorem 125
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Functions and Their Basic Properties
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : funct_1__t125_funct_1 [Urb06]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.19 v8.2.0, 0.22 v7.5.0, 0.25 v7.4.0, 0.10 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.17 v6.4.0, 0.23 v6.3.0, 0.21 v6.2.0, 0.28 v6.1.0, 0.40 v6.0.0, 0.30 v5.5.0, 0.37 v5.4.0, 0.43 v5.3.0, 0.44 v5.2.0, 0.30 v5.1.0, 0.33 v5.0.0, 0.38 v4.1.0, 0.39 v4.0.1, 0.35 v4.0.0, 0.33 v3.7.0, 0.25 v3.5.0, 0.26 v3.4.0, 0.32 v3.3.0, 0.36 v3.2.0
% Syntax : Number of formulae : 37 ( 9 unt; 0 def)
% Number of atoms : 83 ( 8 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 56 ( 10 ~; 1 |; 27 &)
% ( 2 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 57 ( 46 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_intersection2(A,B) = empty_set ) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_intersection2(A,B)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t121_funct_1,axiom,
! [A,B,C] :
( ( relation(C)
& function(C) )
=> ( one_to_one(C)
=> relation_image(C,set_intersection2(A,B)) = set_intersection2(relation_image(C,A),relation_image(C,B)) ) ) ).
fof(t125_funct_1,conjecture,
! [A,B,C] :
( ( relation(C)
& function(C) )
=> ( ( disjoint(A,B)
& one_to_one(C) )
=> disjoint(relation_image(C,A),relation_image(C,B)) ) ) ).
fof(t149_relat_1,axiom,
! [A] :
( relation(A)
=> relation_image(A,empty_set) = empty_set ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------