TPTP Problem File: SEU011+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU011+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Functions and their basic properties, theorem 43
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Functions and Their Basic Properties
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : funct_1__t43_funct_1 [Urb06]
% Status : Theorem
% Rating : 0.73 v9.0.0, 0.78 v8.2.0, 0.81 v7.5.0, 0.84 v7.4.0, 0.77 v7.3.0, 0.72 v7.1.0, 0.70 v7.0.0, 0.83 v6.4.0, 0.88 v6.3.0, 0.83 v6.2.0, 0.88 v6.1.0, 0.90 v6.0.0, 0.91 v5.5.0, 0.96 v5.2.0, 1.00 v5.0.0, 0.92 v4.1.0, 0.87 v4.0.1, 0.91 v4.0.0, 0.92 v3.7.0, 0.90 v3.5.0, 0.95 v3.3.0, 1.00 v3.2.0
% Syntax : Number of formulae : 43 ( 11 unt; 0 def)
% Number of atoms : 110 ( 15 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 79 ( 12 ~; 1 |; 37 &)
% ( 4 <=>; 25 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-2 aty)
% Number of variables : 72 ( 63 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(dt_k5_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(relation_composition(A,B)) ) ).
fof(dt_k6_relat_1,axiom,
! [A] : relation(identity_relation(A)) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc10_relat_1,axiom,
! [A,B] :
( ( empty(A)
& relation(B) )
=> ( empty(relation_composition(B,A))
& relation(relation_composition(B,A)) ) ) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_funct_1,axiom,
! [A,B] :
( ( relation(A)
& function(A)
& relation(B)
& function(B) )
=> ( relation(relation_composition(A,B))
& function(relation_composition(A,B)) ) ) ).
fof(fc1_relat_1,axiom,
! [A,B] :
( ( relation(A)
& relation(B) )
=> relation(set_intersection2(A,B)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_funct_1,axiom,
! [A] :
( relation(identity_relation(A))
& function(identity_relation(A)) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc5_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_dom(A)) ) ).
fof(fc7_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_dom(A))
& relation(relation_dom(A)) ) ) ).
fof(fc9_relat_1,axiom,
! [A,B] :
( ( empty(A)
& relation(B) )
=> ( empty(relation_composition(A,B))
& relation(relation_composition(A,B)) ) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t22_funct_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( in(A,relation_dom(relation_composition(C,B)))
=> apply(relation_composition(C,B),A) = apply(B,apply(C,A)) ) ) ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t34_funct_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> ( B = identity_relation(A)
<=> ( relation_dom(B) = A
& ! [C] :
( in(C,A)
=> apply(B,C) = C ) ) ) ) ).
fof(t37_funct_1,axiom,
! [A,B] :
( ( relation(B)
& function(B) )
=> relation_dom(relation_composition(identity_relation(A),B)) = set_intersection2(relation_dom(B),A) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t43_funct_1,conjecture,
! [A,B] : relation_composition(identity_relation(B),identity_relation(A)) = identity_relation(set_intersection2(A,B)) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t9_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ! [B] :
( ( relation(B)
& function(B) )
=> ( ( relation_dom(A) = relation_dom(B)
& ! [C] :
( in(C,relation_dom(A))
=> apply(A,C) = apply(B,C) ) )
=> A = B ) ) ) ).
%------------------------------------------------------------------------------