TPTP Problem File: SET987+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET987+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : ~ in(A,B) => difference(union(B,singleton(A)),singleton(A)) = B
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t141_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.1.0, 0.07 v6.0.0, 0.09 v5.5.0, 0.11 v5.3.0, 0.19 v5.2.0, 0.05 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.1, 0.13 v4.0.0, 0.12 v3.7.0, 0.05 v3.3.0, 0.14 v3.2.0
% Syntax : Number of formulae : 10 ( 5 unt; 0 def)
% Number of atoms : 15 ( 5 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 13 ( 8 ~; 0 |; 0 &)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 18 ( 16 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t141_zfmisc_1,conjecture,
! [A,B] :
( ~ in(A,B)
=> set_difference(set_union2(B,singleton(A)),singleton(A)) = B ) ).
fof(t40_xboole_1,axiom,
! [A,B] : set_difference(set_union2(A,B),B) = set_difference(A,B) ).
fof(t65_zfmisc_1,axiom,
! [A,B] :
( set_difference(A,singleton(B)) = A
<=> ~ in(B,A) ) ).
%------------------------------------------------------------------------------