TPTP Problem File: SET986+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET986+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : in(A,B) => union(difference(B,singleton(A)),singleton(A)) = B
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t140_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.67 v9.0.0, 0.64 v8.2.0, 0.67 v8.1.0, 0.64 v7.5.0, 0.69 v7.4.0, 0.60 v7.3.0, 0.59 v7.2.0, 0.55 v7.1.0, 0.61 v7.0.0, 0.67 v6.4.0, 0.65 v6.3.0, 0.75 v6.2.0, 0.76 v6.1.0, 0.80 v6.0.0, 0.78 v5.5.0, 0.85 v5.4.0, 0.86 v5.3.0, 0.89 v5.2.0, 0.90 v5.1.0, 0.86 v5.0.0, 0.79 v4.1.0, 0.83 v3.7.0, 0.80 v3.5.0, 0.84 v3.3.0, 0.86 v3.2.0
% Syntax : Number of formulae : 15 ( 5 unt; 0 def)
% Number of atoms : 33 ( 9 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 26 ( 8 ~; 1 |; 3 &)
% ( 9 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 35 ( 33 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d4_xboole_0,axiom,
! [A,B,C] :
( C = set_difference(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& ~ in(D,B) ) ) ) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t140_zfmisc_1,conjecture,
! [A,B] :
( in(A,B)
=> set_union2(set_difference(B,singleton(A)),singleton(A)) = B ) ).
fof(t64_zfmisc_1,axiom,
! [A,B,C] :
( in(A,set_difference(B,singleton(C)))
<=> ( in(A,B)
& A != C ) ) ).
%------------------------------------------------------------------------------