TPTP Problem File: SET984+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET984+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 138
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t138_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.2.0, 0.36 v7.5.0, 0.47 v7.4.0, 0.30 v7.3.0, 0.38 v7.1.0, 0.35 v7.0.0, 0.33 v6.4.0, 0.38 v6.2.0, 0.36 v6.1.0, 0.43 v6.0.0, 0.35 v5.5.0, 0.48 v5.4.0, 0.54 v5.3.0, 0.63 v5.2.0, 0.50 v5.1.0, 0.48 v5.0.0, 0.46 v4.1.0, 0.39 v4.0.1, 0.35 v4.0.0, 0.33 v3.7.0, 0.35 v3.5.0, 0.32 v3.4.0, 0.47 v3.3.0, 0.43 v3.2.0
% Syntax : Number of formulae : 12 ( 8 unt; 0 def)
% Number of atoms : 22 ( 13 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 11 ( 1 ~; 4 |; 2 &)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 26 ( 24 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t113_zfmisc_1,axiom,
! [A,B] :
( cartesian_product2(A,B) = empty_set
<=> ( A = empty_set
| B = empty_set ) ) ).
fof(t123_zfmisc_1,axiom,
! [A,B,C,D] : cartesian_product2(set_intersection2(A,B),set_intersection2(C,D)) = set_intersection2(cartesian_product2(A,C),cartesian_product2(B,D)) ).
fof(t134_zfmisc_1,axiom,
! [A,B,C,D] :
( cartesian_product2(A,B) = cartesian_product2(C,D)
=> ( A = empty_set
| B = empty_set
| ( A = C
& B = D ) ) ) ).
fof(t138_zfmisc_1,conjecture,
! [A,B,C,D] :
( subset(cartesian_product2(A,B),cartesian_product2(C,D))
=> ( cartesian_product2(A,B) = empty_set
| ( subset(A,C)
& subset(B,D) ) ) ) ).
fof(t17_xboole_1,axiom,
! [A,B] : subset(set_intersection2(A,B),A) ).
fof(t28_xboole_1,axiom,
! [A,B] :
( subset(A,B)
=> set_intersection2(A,B) = A ) ).
%------------------------------------------------------------------------------