TPTP Problem File: SET983+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET983+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 137
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t137_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.03 v7.3.0, 0.07 v7.2.0, 0.10 v7.1.0, 0.13 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.17 v6.2.0, 0.28 v6.1.0, 0.30 v6.0.0, 0.26 v5.5.0, 0.22 v5.4.0, 0.21 v5.3.0, 0.30 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.25 v4.1.0, 0.26 v4.0.0, 0.25 v3.7.0, 0.20 v3.5.0, 0.21 v3.4.0, 0.16 v3.3.0, 0.21 v3.2.0
% Syntax : Number of formulae : 8 ( 5 unt; 0 def)
% Number of atoms : 14 ( 4 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 8 ( 2 ~; 0 |; 2 &)
% ( 2 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 21 ( 19 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t123_zfmisc_1,axiom,
! [A,B,C,D] : cartesian_product2(set_intersection2(A,B),set_intersection2(C,D)) = set_intersection2(cartesian_product2(A,C),cartesian_product2(B,D)) ).
fof(t137_zfmisc_1,conjecture,
! [A,B,C,D,E] :
( ( in(A,cartesian_product2(B,C))
& in(A,cartesian_product2(D,E)) )
=> in(A,cartesian_product2(set_intersection2(B,D),set_intersection2(C,E))) ) ).
%------------------------------------------------------------------------------