TPTP Problem File: SET981+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET981+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 135
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t135_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 1.00 v5.4.0, 0.96 v5.3.0, 1.00 v3.2.0
% Syntax : Number of formulae : 25 ( 9 unt; 0 def)
% Number of atoms : 58 ( 19 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 46 ( 13 ~; 3 |; 10 &)
% ( 13 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-2 aty)
% Number of variables : 66 ( 58 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
% : Infinox says this has no finite (counter-) models.
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d1_xboole_0,axiom,
! [A] :
( A = empty_set
<=> ! [B] : ~ in(B,A) ) ).
fof(d2_tarski,axiom,
! [A,B,C] :
( C = unordered_pair(A,B)
<=> ! [D] :
( in(D,C)
<=> ( D = A
| D = B ) ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d2_zfmisc_1,axiom,
! [A,B,C] :
( C = cartesian_product2(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E,F] :
( in(E,A)
& in(F,B)
& D = ordered_pair(E,F) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(l50_zfmisc_1,axiom,
! [A,B] :
( in(A,B)
=> subset(A,union(B)) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(s1_xboole_0__e2_121_2__zfmisc_1,axiom,
! [A] :
? [B] :
! [C] :
( in(C,B)
<=> ( in(C,union(A))
& ? [D] :
( C = D
& ? [E] :
( in(E,D)
& in(E,A) ) ) ) ) ).
fof(t102_zfmisc_1,axiom,
! [A,B,C] :
~ ( in(A,cartesian_product2(B,C))
& ! [D,E] : ordered_pair(D,E) != A ) ).
fof(t135_zfmisc_1,conjecture,
! [A,B] :
( ( subset(A,cartesian_product2(A,B))
| subset(A,cartesian_product2(B,A)) )
=> A = empty_set ) ).
fof(t15_xboole_1,axiom,
! [A,B] :
( set_union2(A,B) = empty_set
=> A = empty_set ) ).
fof(t7_tarski,axiom,
! [A,B] :
~ ( in(A,B)
& ! [C] :
~ ( in(C,B)
& ! [D] :
~ ( in(D,B)
& in(D,C) ) ) ) ).
%------------------------------------------------------------------------------