TPTP Problem File: SET979+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET979+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 132
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t132_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.1.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.13 v7.3.0, 0.10 v7.1.0, 0.09 v7.0.0, 0.10 v6.4.0, 0.12 v6.2.0, 0.20 v6.0.0, 0.13 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.30 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.12 v4.1.0, 0.17 v3.7.0, 0.10 v3.5.0, 0.11 v3.4.0, 0.16 v3.3.0, 0.07 v3.2.0
% Syntax : Number of formulae : 10 ( 6 unt; 0 def)
% Number of atoms : 14 ( 8 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 9 ( 5 ~; 0 |; 2 &)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 20 ( 18 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t120_zfmisc_1,axiom,
! [A,B,C] :
( cartesian_product2(set_union2(A,B),C) = set_union2(cartesian_product2(A,C),cartesian_product2(B,C))
& cartesian_product2(C,set_union2(A,B)) = set_union2(cartesian_product2(C,A),cartesian_product2(C,B)) ) ).
fof(t132_zfmisc_1,conjecture,
! [A,B,C] :
( cartesian_product2(unordered_pair(A,B),C) = set_union2(cartesian_product2(singleton(A),C),cartesian_product2(singleton(B),C))
& cartesian_product2(C,unordered_pair(A,B)) = set_union2(cartesian_product2(C,singleton(A)),cartesian_product2(C,singleton(B))) ) ).
fof(t41_enumset1,axiom,
! [A,B] : unordered_pair(A,B) = set_union2(singleton(A),singleton(B)) ).
%------------------------------------------------------------------------------