TPTP Problem File: SET962+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET962+1 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Set theory
% Problem : cartesian_product(A,A) = cartesian_product(B,B) => A = B
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t115_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.33 v7.5.0, 0.34 v7.4.0, 0.23 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.30 v6.4.0, 0.35 v6.3.0, 0.33 v6.2.0, 0.36 v6.1.0, 0.33 v6.0.0, 0.39 v5.5.0, 0.37 v5.4.0, 0.39 v5.3.0, 0.41 v5.2.0, 0.30 v5.1.0, 0.33 v5.0.0, 0.29 v4.1.0, 0.26 v4.0.1, 0.35 v4.0.0
% Syntax : Number of formulae : 9 ( 5 unt; 0 def)
% Number of atoms : 15 ( 5 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 9 ( 3 ~; 0 |; 1 &)
% ( 2 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 19 ( 17 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
% Bugfixes : v4.0.0 - Removed duplicate formula t2_tarski
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(l55_zfmisc_1,axiom,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t115_zfmisc_1,conjecture,
! [A,B] :
( cartesian_product2(A,A) = cartesian_product2(B,B)
=> A = B ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
%------------------------------------------------------------------------------