TPTP Problem File: SET960+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET960+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : cart_prod(A,B) = empty <=> ( A = empty | B = empty )
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t113_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.1.0, 0.36 v7.5.0, 0.34 v7.4.0, 0.30 v7.3.0, 0.34 v7.2.0, 0.31 v7.1.0, 0.35 v7.0.0, 0.23 v6.4.0, 0.35 v6.3.0, 0.38 v6.2.0, 0.40 v6.1.0, 0.43 v6.0.0, 0.48 v5.5.0, 0.41 v5.4.0, 0.46 v5.3.0, 0.48 v5.2.0, 0.30 v5.1.0, 0.29 v5.0.0, 0.33 v4.1.0, 0.35 v4.0.1, 0.39 v4.0.0, 0.38 v3.7.0, 0.25 v3.5.0, 0.26 v3.4.0, 0.32 v3.3.0, 0.29 v3.2.0
% Syntax : Number of formulae : 10 ( 6 unt; 0 def)
% Number of atoms : 18 ( 8 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 12 ( 4 ~; 1 |; 2 &)
% ( 4 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 20 ( 16 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d1_xboole_0,axiom,
! [A] :
( A = empty_set
<=> ! [B] : ~ in(B,A) ) ).
fof(d2_zfmisc_1,axiom,
! [A,B,C] :
( C = cartesian_product2(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E,F] :
( in(E,A)
& in(F,B)
& D = ordered_pair(E,F) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t113_zfmisc_1,conjecture,
! [A,B] :
( cartesian_product2(A,B) = empty_set
<=> ( A = empty_set
| B = empty_set ) ) ).
%------------------------------------------------------------------------------