TPTP Problem File: SET958+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET958+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 111
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t111_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.17 v8.1.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.10 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.12 v6.2.0, 0.16 v6.1.0, 0.20 v6.0.0, 0.09 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.37 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.12 v4.1.0, 0.17 v3.7.0, 0.05 v3.5.0, 0.11 v3.4.0, 0.26 v3.3.0, 0.21 v3.2.0
% Syntax : Number of formulae : 9 ( 6 unt; 0 def)
% Number of atoms : 16 ( 3 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 12 ( 5 ~; 0 |; 2 &)
% ( 1 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 22 ( 20 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t111_zfmisc_1,conjecture,
! [A,B] :
( ( ! [C] :
~ ( in(C,A)
& ! [D,E] : C != ordered_pair(D,E) )
& ! [C,D] :
( in(ordered_pair(C,D),A)
=> in(ordered_pair(C,D),B) ) )
=> subset(A,B) ) ).
%------------------------------------------------------------------------------