TPTP Problem File: SET951+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET951+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 104
% Version : [Urb06] axioms : Especial.
% English : ~ ( in(A,intersection(cart_product(B,C),cart_product(D,E)))
% & ~ ( A = ordered_pair(F,G) & in(F,intersection(B,D))
% & in(G,set_intersection2(C,E)) ) )
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t104_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.47 v8.2.0, 0.50 v8.1.0, 0.44 v7.5.0, 0.47 v7.4.0, 0.40 v7.3.0, 0.52 v7.2.0, 0.55 v7.1.0, 0.52 v7.0.0, 0.43 v6.4.0, 0.62 v6.3.0, 0.58 v6.2.0, 0.64 v6.1.0, 0.73 v6.0.0, 0.74 v5.4.0, 0.75 v5.3.0, 0.78 v5.2.0, 0.70 v5.1.0, 0.71 v4.1.0, 0.65 v4.0.0, 0.75 v3.5.0, 0.68 v3.4.0, 0.84 v3.3.0, 0.71 v3.2.0
% Syntax : Number of formulae : 12 ( 7 unt; 0 def)
% Number of atoms : 25 ( 11 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 18 ( 5 ~; 0 |; 7 &)
% ( 4 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 0 con; 1-2 aty)
% Number of variables : 35 ( 31 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d2_zfmisc_1,axiom,
! [A,B,C] :
( C = cartesian_product2(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E,F] :
( in(E,A)
& in(F,B)
& D = ordered_pair(E,F) ) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t104_zfmisc_1,conjecture,
! [A,B,C,D,E] :
~ ( in(A,set_intersection2(cartesian_product2(B,C),cartesian_product2(D,E)))
& ! [F,G] :
~ ( A = ordered_pair(F,G)
& in(F,set_intersection2(B,D))
& in(G,set_intersection2(C,E)) ) ) ).
fof(t33_zfmisc_1,axiom,
! [A,B,C,D] :
( ordered_pair(A,B) = ordered_pair(C,D)
=> ( A = C
& B = D ) ) ).
%------------------------------------------------------------------------------