TPTP Problem File: SET949+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET949+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : ~ ( in(A,cartesian_product(B,C)) & ordered_pair(D,E) != A )
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t102_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.2.0, 0.11 v8.1.0, 0.17 v7.5.0, 0.16 v7.4.0, 0.10 v7.3.0, 0.14 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.08 v6.2.0, 0.16 v6.1.0, 0.27 v6.0.0, 0.26 v5.5.0, 0.15 v5.4.0, 0.14 v5.3.0, 0.19 v5.2.0, 0.05 v5.0.0, 0.17 v3.7.0, 0.10 v3.5.0, 0.11 v3.4.0, 0.16 v3.3.0, 0.14 v3.2.0
% Syntax : Number of formulae : 8 ( 5 unt; 0 def)
% Number of atoms : 14 ( 5 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 11 ( 5 ~; 0 |; 3 &)
% ( 2 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 21 ( 17 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d2_zfmisc_1,axiom,
! [A,B,C] :
( C = cartesian_product2(A,B)
<=> ! [D] :
( in(D,C)
<=> ? [E,F] :
( in(E,A)
& in(F,B)
& D = ordered_pair(E,F) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t102_zfmisc_1,conjecture,
! [A,B,C] :
~ ( in(A,cartesian_product2(B,C))
& ! [D,E] : ordered_pair(D,E) != A ) ).
%------------------------------------------------------------------------------