TPTP Problem File: SET937+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET937+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : subset(pset(diff(A,B)),union(sgtn(empty),diff(pset(A),pset(B))))
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t84_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.73 v9.0.0, 0.69 v8.2.0, 0.75 v8.1.0, 0.69 v7.5.0, 0.84 v7.4.0, 0.77 v7.3.0, 0.83 v6.4.0, 0.88 v6.3.0, 0.92 v6.2.0, 0.96 v6.1.0, 1.00 v6.0.0, 0.96 v5.5.0, 0.93 v5.4.0, 0.96 v5.2.0, 1.00 v5.0.0, 0.96 v4.1.0, 0.91 v4.0.1, 1.00 v4.0.0, 0.96 v3.7.0, 0.95 v3.3.0, 0.93 v3.2.0
% Syntax : Number of formulae : 24 ( 11 unt; 0 def)
% Number of atoms : 46 ( 11 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 29 ( 7 ~; 1 |; 3 &)
% ( 10 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 53 ( 51 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d1_zfmisc_1,axiom,
! [A,B] :
( B = powerset(A)
<=> ! [C] :
( in(C,B)
<=> subset(C,A) ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d4_xboole_0,axiom,
! [A,B,C] :
( C = set_difference(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& ~ in(D,B) ) ) ) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_intersection2(A,B) = empty_set ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t1_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t28_xboole_1,axiom,
! [A,B] :
( subset(A,B)
=> set_intersection2(A,B) = A ) ).
fof(t36_xboole_1,axiom,
! [A,B] : subset(set_difference(A,B),A) ).
fof(t63_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& disjoint(B,C) )
=> disjoint(A,C) ) ).
fof(t79_xboole_1,axiom,
! [A,B] : disjoint(set_difference(A,B),B) ).
fof(t84_zfmisc_1,conjecture,
! [A,B] : subset(powerset(set_difference(A,B)),set_union2(singleton(empty_set),set_difference(powerset(A),powerset(B)))) ).
%------------------------------------------------------------------------------