TPTP Problem File: SET936+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET936+1 : TPTP v9.0.0. Bugfixed v4.0.0.
% Domain : Set theory
% Problem : powset(intersection(A,B)) = intersection(powset(A),powset(B))
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t83_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.64 v9.0.0, 0.69 v8.2.0, 0.78 v8.1.0, 0.67 v7.5.0, 0.81 v7.4.0, 0.77 v7.3.0, 0.72 v7.2.0, 0.69 v7.1.0, 0.83 v7.0.0, 0.77 v6.3.0, 0.83 v6.2.0, 0.92 v6.1.0, 0.97 v6.0.0, 0.91 v5.5.0, 0.85 v5.4.0, 0.82 v5.3.0, 0.85 v5.1.0, 0.86 v5.0.0, 0.83 v4.1.0, 0.78 v4.0.1, 0.83 v4.0.0
% Syntax : Number of formulae : 13 ( 7 unt; 0 def)
% Number of atoms : 25 ( 6 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 14 ( 2 ~; 0 |; 3 &)
% ( 5 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 30 ( 28 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
% Bugfixes : v4.0.0 - Removed duplicate formula t2_tarski
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d1_zfmisc_1,axiom,
! [A,B] :
( B = powerset(A)
<=> ! [C] :
( in(C,B)
<=> subset(C,A) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t17_xboole_1,axiom,
! [A,B] : subset(set_intersection2(A,B),A) ).
fof(t19_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& subset(A,C) )
=> subset(A,set_intersection2(B,C)) ) ).
fof(t1_xboole_1,axiom,
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t83_zfmisc_1,conjecture,
! [A,B] : powerset(set_intersection2(A,B)) = set_intersection2(powerset(A),powerset(B)) ).
%------------------------------------------------------------------------------