TPTP Problem File: SET935+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET935+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : union(powset(A),powset(B)) = powset(union(A,B)) => inc_comp(A,B)
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t82_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.33 v8.1.0, 0.31 v7.5.0, 0.38 v7.4.0, 0.23 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.30 v7.0.0, 0.23 v6.4.0, 0.31 v6.3.0, 0.33 v6.2.0, 0.40 v6.0.0, 0.39 v5.5.0, 0.41 v5.4.0, 0.43 v5.3.0, 0.48 v5.2.0, 0.25 v5.1.0, 0.24 v5.0.0, 0.38 v4.1.0, 0.39 v4.0.1, 0.43 v4.0.0, 0.42 v3.7.0, 0.35 v3.5.0, 0.32 v3.4.0, 0.42 v3.3.0, 0.29 v3.2.0
% Syntax : Number of formulae : 16 ( 7 unt; 0 def)
% Number of atoms : 30 ( 6 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 20 ( 6 ~; 2 |; 1 &)
% ( 6 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 33 ( 31 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(d1_zfmisc_1,axiom,
! [A,B] :
( B = powerset(A)
<=> ! [C] :
( in(C,B)
<=> subset(C,A) ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d9_xboole_0,axiom,
! [A,B] :
( inclusion_comparable(A,B)
<=> ( subset(A,B)
| subset(B,A) ) ) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(reflexivity_r3_xboole_0,axiom,
! [A,B] : inclusion_comparable(A,A) ).
fof(symmetry_r3_xboole_0,axiom,
! [A,B] :
( inclusion_comparable(A,B)
=> inclusion_comparable(B,A) ) ).
fof(t7_xboole_1,axiom,
! [A,B] : subset(A,set_union2(A,B)) ).
fof(t82_zfmisc_1,conjecture,
! [A,B] :
( set_union2(powerset(A),powerset(B)) = powerset(set_union2(A,B))
=> inclusion_comparable(A,B) ) ).
%------------------------------------------------------------------------------