TPTP Problem File: SET931+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET931+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 75
% Version : [Urb06] axioms : Especial.
% English : difference(A,unordered_pair(B,C)) = empty_set
% <=> ~ ( A != empty_set & A != singleton(B) & A != singleton(C) &
% A != unordered_pair(B,C) )
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t75_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.17 v8.2.0, 0.14 v8.1.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.04 v6.2.0, 0.12 v6.1.0, 0.20 v6.0.0, 0.13 v5.5.0, 0.22 v5.4.0, 0.21 v5.3.0, 0.26 v5.2.0, 0.00 v5.0.0, 0.04 v4.1.0, 0.09 v4.0.0, 0.08 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0, 0.07 v3.2.0
% Syntax : Number of formulae : 8 ( 5 unt; 0 def)
% Number of atoms : 17 ( 11 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 20 ( 11 ~; 0 |; 6 &)
% ( 3 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 14 ( 12 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(l46_zfmisc_1,axiom,
! [A,B,C] :
( subset(A,unordered_pair(B,C))
<=> ~ ( A != empty_set
& A != singleton(B)
& A != singleton(C)
& A != unordered_pair(B,C) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t37_xboole_1,axiom,
! [A,B] :
( set_difference(A,B) = empty_set
<=> subset(A,B) ) ).
fof(t75_zfmisc_1,conjecture,
! [A,B,C] :
( set_difference(A,unordered_pair(B,C)) = empty_set
<=> ~ ( A != empty_set
& A != singleton(B)
& A != singleton(C)
& A != unordered_pair(B,C) ) ) ).
%------------------------------------------------------------------------------