TPTP Problem File: SET930+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET930+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 74
% Version : [Urb06] axioms : Especial.
% English : ~ ( difference(unordered_pair(A,B),C) != empty_set
% & difference(unordered_pair(A,B),C) != singleton(A)
% & difference(unordered_pair(A,B),C) != singleton(B)
% & difference(unordered_pair(A,B),C) != unordered_pair(A,B) )
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t74_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.17 v8.2.0, 0.14 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.10 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.13 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.12 v6.2.0, 0.16 v6.1.0, 0.17 v6.0.0, 0.09 v5.5.0, 0.15 v5.4.0, 0.18 v5.3.0, 0.26 v5.2.0, 0.10 v5.0.0, 0.17 v3.7.0, 0.10 v3.5.0, 0.11 v3.4.0, 0.16 v3.3.0, 0.14 v3.2.0
% Syntax : Number of formulae : 9 ( 4 unt; 0 def)
% Number of atoms : 20 ( 9 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 21 ( 10 ~; 1 |; 6 &)
% ( 3 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 18 ( 16 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(l39_zfmisc_1,axiom,
! [A,B,C] :
( set_difference(unordered_pair(A,B),C) = singleton(A)
<=> ( ~ in(A,C)
& ( in(B,C)
| A = B ) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t72_zfmisc_1,axiom,
! [A,B,C] :
( set_difference(unordered_pair(A,B),C) = unordered_pair(A,B)
<=> ( ~ in(A,C)
& ~ in(B,C) ) ) ).
fof(t73_zfmisc_1,axiom,
! [A,B,C] :
( set_difference(unordered_pair(A,B),C) = empty_set
<=> ( in(A,C)
& in(B,C) ) ) ).
fof(t74_zfmisc_1,conjecture,
! [A,B,C] :
~ ( set_difference(unordered_pair(A,B),C) != empty_set
& set_difference(unordered_pair(A,B),C) != singleton(A)
& set_difference(unordered_pair(A,B),C) != singleton(B)
& set_difference(unordered_pair(A,B),C) != unordered_pair(A,B) ) ).
%------------------------------------------------------------------------------