TPTP Problem File: SET928+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET928+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : diff(uno_pair(A,B),C) = uno_pair(A,B) <=> (~in(A,C) & ~in(B,C))
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t72_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.06 v9.0.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.10 v6.4.0, 0.15 v6.3.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.17 v6.0.0, 0.09 v5.5.0, 0.07 v5.4.0, 0.11 v5.3.0, 0.22 v5.2.0, 0.05 v5.0.0, 0.08 v4.1.0, 0.13 v4.0.1, 0.17 v3.7.0, 0.05 v3.4.0, 0.16 v3.3.0, 0.14 v3.2.0
% Syntax : Number of formulae : 9 ( 3 unt; 0 def)
% Number of atoms : 17 ( 3 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 17 ( 9 ~; 0 |; 4 &)
% ( 2 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 19 ( 17 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t55_zfmisc_1,axiom,
! [A,B,C] :
~ ( disjoint(unordered_pair(A,B),C)
& in(A,C) ) ).
fof(t57_zfmisc_1,axiom,
! [A,B,C] :
~ ( ~ in(A,B)
& ~ in(C,B)
& ~ disjoint(unordered_pair(A,C),B) ) ).
fof(t72_zfmisc_1,conjecture,
! [A,B,C] :
( set_difference(unordered_pair(A,B),C) = unordered_pair(A,B)
<=> ( ~ in(A,C)
& ~ in(B,C) ) ) ).
fof(t83_xboole_1,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_difference(A,B) = A ) ).
%------------------------------------------------------------------------------