TPTP Problem File: SET924+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET924+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : difference(singleton(A),B) = singleton(A) <=> ~ in(A,B)
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t67_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.03 v7.2.0, 0.00 v6.4.0, 0.04 v6.1.0, 0.10 v6.0.0, 0.09 v5.5.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.08 v3.7.0, 0.00 v3.4.0, 0.05 v3.3.0, 0.07 v3.2.0
% Syntax : Number of formulae : 5 ( 2 unt; 0 def)
% Number of atoms : 8 ( 2 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 7 ( 4 ~; 0 |; 0 &)
% ( 2 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 8 ( 6 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t67_zfmisc_1,conjecture,
! [A,B] :
( set_difference(singleton(A),B) = singleton(A)
<=> ~ in(A,B) ) ).
fof(l34_zfmisc_1,axiom,
! [A,B] :
( set_difference(singleton(A),B) = singleton(A)
<=> ~ in(A,B) ) ).
%------------------------------------------------------------------------------