TPTP Problem File: SET919+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET919+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : in(A,B) => ((in(C,B) & A!=C) | intsctn(uno_pair(A,C),B) = sgtn(A))
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t60_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.52 v9.0.0, 0.56 v8.2.0, 0.58 v7.5.0, 0.66 v7.4.0, 0.57 v7.3.0, 0.55 v7.2.0, 0.52 v7.1.0, 0.61 v7.0.0, 0.60 v6.4.0, 0.62 v6.2.0, 0.68 v6.1.0, 0.70 v5.5.0, 0.74 v5.4.0, 0.82 v5.3.0, 0.81 v5.2.0, 0.75 v5.1.0, 0.81 v5.0.0, 0.79 v4.1.0, 0.87 v4.0.0, 0.83 v3.7.0, 0.80 v3.5.0, 0.84 v3.3.0, 0.79 v3.2.0
% Syntax : Number of formulae : 10 ( 5 unt; 0 def)
% Number of atoms : 22 ( 11 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 15 ( 3 ~; 2 |; 2 &)
% ( 6 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 24 ( 22 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d2_tarski,axiom,
! [A,B,C] :
( C = unordered_pair(A,B)
<=> ! [D] :
( in(D,C)
<=> ( D = A
| D = B ) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t60_zfmisc_1,conjecture,
! [A,B,C] :
( in(A,B)
=> ( ( in(C,B)
& A != C )
| set_intersection2(unordered_pair(A,C),B) = singleton(A) ) ) ).
%------------------------------------------------------------------------------