TPTP Problem File: SET917+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET917+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : disjoint(sgtn(A),B) | intersection(sgtn(A),B) = sgtn(A)
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t58_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.04 v5.3.0, 0.11 v5.2.0, 0.05 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.0, 0.08 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0, 0.14 v3.2.0
% Syntax : Number of formulae : 9 ( 4 unt; 0 def)
% Number of atoms : 14 ( 4 equ)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 8 ( 3 ~; 1 |; 0 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 16 ( 14 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(l28_zfmisc_1,axiom,
! [A,B] :
( ~ in(A,B)
=> disjoint(singleton(A),B) ) ).
fof(l32_zfmisc_1,axiom,
! [A,B] :
( in(A,B)
=> set_intersection2(B,singleton(A)) = singleton(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t58_zfmisc_1,conjecture,
! [A,B] :
( disjoint(singleton(A),B)
| set_intersection2(singleton(A),B) = singleton(A) ) ).
%------------------------------------------------------------------------------