TPTP Problem File: SET914+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET914+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : ~ ( disjoint(unordered_pair(A,B),C) & in(A,C) )
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t55_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.10 v7.3.0, 0.14 v7.2.0, 0.17 v7.1.0, 0.22 v7.0.0, 0.17 v6.4.0, 0.27 v6.3.0, 0.29 v6.2.0, 0.36 v6.1.0, 0.40 v6.0.0, 0.39 v5.5.0, 0.30 v5.4.0, 0.32 v5.3.0, 0.33 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.21 v4.1.0, 0.22 v4.0.1, 0.26 v4.0.0, 0.25 v3.7.0, 0.20 v3.5.0, 0.21 v3.4.0, 0.32 v3.3.0, 0.29 v3.2.0
% Syntax : Number of formulae : 13 ( 6 unt; 0 def)
% Number of atoms : 24 ( 9 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 15 ( 4 ~; 1 |; 2 &)
% ( 6 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 27 ( 25 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d1_xboole_0,axiom,
! [A] :
( A = empty_set
<=> ! [B] : ~ in(B,A) ) ).
fof(d2_tarski,axiom,
! [A,B,C] :
( C = unordered_pair(A,B)
<=> ! [D] :
( in(D,C)
<=> ( D = A
| D = B ) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_intersection2(A,B) = empty_set ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t55_zfmisc_1,conjecture,
! [A,B,C] :
~ ( disjoint(unordered_pair(A,B),C)
& in(A,C) ) ).
%------------------------------------------------------------------------------