TPTP Problem File: SET902+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET902+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 43
% Version : [Urb06] axioms : Especial.
% English : ~ ( singleton(A) = set_union2(B,C) & ~ ( B = singleton(A) &
% C = singleton(A) ) & ~ ( B = empty_set & C = singleton(A) ) &
% ~ ( B = singleton(A) & C = empty_set ) )
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t43_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.25 v8.2.0, 0.17 v8.1.0, 0.22 v7.5.0, 0.25 v7.4.0, 0.17 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.17 v6.2.0, 0.20 v6.0.0, 0.13 v5.5.0, 0.19 v5.4.0, 0.14 v5.3.0, 0.22 v5.2.0, 0.10 v5.0.0, 0.17 v4.0.1, 0.22 v4.0.0, 0.21 v3.7.0, 0.05 v3.4.0, 0.21 v3.3.0, 0.14 v3.2.0
% Syntax : Number of formulae : 12 ( 8 unt; 0 def)
% Number of atoms : 22 ( 12 equ)
% Maximal formula atoms : 7 ( 1 avg)
% Number of connectives : 20 ( 10 ~; 1 |; 6 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 20 ( 18 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(l1_zfmisc_1,axiom,
! [A] : singleton(A) != empty_set ).
fof(l4_zfmisc_1,axiom,
! [A,B] :
( subset(A,singleton(B))
<=> ( A = empty_set
| A = singleton(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t43_zfmisc_1,conjecture,
! [A,B,C] :
~ ( singleton(A) = set_union2(B,C)
& ~ ( B = singleton(A)
& C = singleton(A) )
& ~ ( B = empty_set
& C = singleton(A) )
& ~ ( B = singleton(A)
& C = empty_set ) ) ).
fof(t7_xboole_1,axiom,
! [A,B] : subset(A,set_union2(A,B)) ).
%------------------------------------------------------------------------------