TPTP Problem File: SET901+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET901+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : Basic properties of sets, theorem 42
% Version : [Urb06] axioms : Especial.
% English : subset(A,unordered_pair(B,C)) <=> ~ ( A != empty_set &
% A != singleton(B) & A != singleton(C) & A != unordered_pair(B,C) )
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t42_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.2.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.2.0, 0.12 v6.1.0, 0.13 v6.0.0, 0.09 v5.5.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.08 v3.7.0, 0.00 v3.4.0, 0.05 v3.3.0, 0.07 v3.2.0
% Syntax : Number of formulae : 7 ( 5 unt; 0 def)
% Number of atoms : 15 ( 9 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 19 ( 11 ~; 0 |; 6 &)
% ( 2 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 12 ( 10 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t42_zfmisc_1,conjecture,
! [A,B,C] :
( subset(A,unordered_pair(B,C))
<=> ~ ( A != empty_set
& A != singleton(B)
& A != singleton(C)
& A != unordered_pair(B,C) ) ) ).
fof(l46_zfmisc_1,axiom,
! [A,B,C] :
( subset(A,unordered_pair(B,C))
<=> ~ ( A != empty_set
& A != singleton(B)
& A != singleton(C)
& A != unordered_pair(B,C) ) ) ).
%------------------------------------------------------------------------------