TPTP Problem File: SET890+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SET890+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Set theory
% Problem : union(singleton(A)) = A
% Version : [Urb06] axioms : Especial.
% English :
% Refs : [Byl90] Bylinski (1990), Some Basic Properties of Sets
% : [Urb06] Urban (2006), Email to G. Sutcliffe
% Source : [Urb06]
% Names : zfmisc_1__t31_zfmisc_1 [Urb06]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.28 v7.5.0, 0.31 v7.4.0, 0.23 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.17 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.17 v6.2.0, 0.16 v6.1.0, 0.27 v6.0.0, 0.35 v5.5.0, 0.33 v5.4.0, 0.32 v5.3.0, 0.37 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.29 v4.1.0, 0.30 v4.0.1, 0.26 v4.0.0, 0.25 v3.5.0, 0.26 v3.4.0, 0.32 v3.3.0, 0.29 v3.2.0
% Syntax : Number of formulae : 10 ( 4 unt; 0 def)
% Number of atoms : 21 ( 5 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 13 ( 2 ~; 0 |; 2 &)
% ( 6 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-1 aty)
% Number of variables : 21 ( 18 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = singleton(A)
<=> ! [C] :
( in(C,B)
<=> C = A ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(l50_zfmisc_1,axiom,
! [A,B] :
( in(A,B)
=> subset(A,union(B)) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t31_zfmisc_1,conjecture,
! [A] : union(singleton(A)) = A ).
%------------------------------------------------------------------------------